The geostatistical technique of Kriging has extensively been used for the investigation and delineation of soil heavy metal pollution. Kriging is rarely used in practical circumstances, however, because the parameter values are difficult to decide and relatively optimal locations for further sampling are difficult to find. In this study, we used large numbers of assumed actual polluted fields (AAPFs) randomly generated by unconditional simulation (US) to assess the adjusted total fee (ATF), an assessment standard developed for balancing the correct treatment rate (CTR) and total fee (TF), based on a traditional strategy of systematic (or uniform) grid sampling (SGS) and Kriging. We found that a strategy using both SGS and Kriging was more cost-effective than a strategy using only SGS. Next, we used a genetic algorithm (GA) approach to find optimal locations for the additional sampling. We found that the optimized locations for the additional sampling were at the joint districts of polluted areas and unpolluted areas, where abundant SGS data appeared near the threshold value. This strategy was less helpful, however, when the pollution of polluted fields showed no spatial correlation.