Background
Poly-γ-glutamic acid (γ-PGA) is a biopolymer of microbial origin, consisting of repeating units of l-glutamic acid and/or D-glutamic acid. The biopolymer has found use in the fields of agriculture, food, wastewater, and medicine, owing to its non-toxic, biodegradable, and biocompatible properties. Due to its biodegradability, γ-PGA is being tipped to dislodge synthetic plastics in drug delivery application. High cost of production, relative to plastics, is however a clog in the wheel of achieving this.
Main body of abstract
This review looked at the production, nanoparticles fabrication, and drug delivery application of γ-PGA. γ-PGA production optimization by modifying the fermentation medium to tailor towards the production of desirable polymer at reduced cost and techniques for the formulation of γ-PGA nanoparticle as well as its characterization were discussed. This review also evaluated the application of γ-PGA and its nanoparticles in the delivery of drugs to action site. Characterization of γ-PGA and its nanoparticles is a crucial step towards determining the applicability of the biopolymer. γ-PGA has been used in the delivery of active agents to action sites.
Conclusion
This review highlights some of the efforts that have been made in the appraisal of γ-PGA and its nanoparticles for drug delivery. γ-PGA is a candidate for future extensive use in drug delivery.