Optimized Substrate Positioning Enables Switches in C–H Cleavage Site and Reaction Outcome in the Hydroxylation-Epoxidation Sequence Catalyzed by Hyoscyamine 6β-Hydroxylase
Eliott Wenger,
Ryan Martinie,
Richiro Ushimaru
et al.
Abstract:Hyoscyamine 6β-hydroxylase (H6H) is an Fe(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase that catalyzes the last two steps in the biosynthesis of scopolamine, a prolifically administered anti-nausea drug. After its namesake first reaction, H6H couples the newly installed C6-bonded oxygen to C7 to form the epoxide of scopolamine. Oxoiron(IV) (ferryl) intermediates initiate both reactions by cleaving C–H bonds, but it remains unclear how the enzyme switches target site and promotes (C6)O–C7 coupling in pre… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.