The aldo-keto reductases (AKR) are a superfamily of enzymes with diverse functions in the reduction of aldehydes and ketones. AKR enzymes are found in a wide range of microorganisms, and many open reading frames encoding related putative enzymes have been identified through genome sequencing projects. Established microbial members of the superfamily include the xylose reductases, 2,5-diketo-D-gluconic acid reductases and L-keto ester reductases. The AKR enzymes share a common (K/L) 8 structure, and conserved catalytic mechanism, although there is considerable variation in the substrate-binding pocket. The physiological function of many of these enzymes is unknown, but a variety of methods including gene disruptions, heterologous expression systems and expression profiling are being employed to deduce the roles of these enzymes in cell metabolism. Several microbial AKR are already being exploited in biotransformation reactions and there is potential for other novel members of this important superfamily to be identified, studied and utilized in this way. ß 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.Keywords : Aldo-keto reductase; Aldehyde ; Ketone
Reduction of aldehydes and ketones in the microbial cellAldehydes and ketones are important intermediates in many metabolic pathways, including sugar metabolism, steroid biosynthesis, amino acid metabolism, and biosynthesis of secondary metabolites. In addition, microbial cells encounter aldehydic products of lipid peroxidation after exposure to oxidants and heavy metals [1], as well as directly from exogenous sources, including plant phytoallexins, toxins and synthetically derived chemicals in the environment. Because of the reactivity of the carbonyl group, many aldehydes and ketones are mutagenic representing a potential danger to microbial cells [2]. The ability to metabolize these compounds gives a selective advantage to any microorganisms that are exposed to them.Aldehydes and ketones can be metabolized by several enzyme systems including aldehyde dehydrogenases that can oxidize aldehydes to acids, and the well-characterized alcohol dehydrogenases, which include the short-chain dehydrogenase/reductase and medium-chain dehydrogenase/ reductase families (reviewed in [3,4]). The number and structural diversity of these latter enzyme families might be considered su⁄cient to account for the capacity of the cell to reduce aldehydes and ketones. However, members of another superfamily of enzymes, the aldo-keto reductases (AKR), are present in many microbial cells [5], suggesting an evolutionary convergence of function between the superfamilies. Knowledge of the AKR family has grown rapidly over the last decade, and it now contains over 60 members from across all species [6]. It is the intention of this minireview to present the current state of knowledge of the microbial members of the AKR superfamily, focussing in particular on the structural features and biochemical activities of the enzymes, how...