Optimizing Artificial Neural Networks to Minimize Arithmetic Errors in Stochastic Computing Implementations
Christiam F. Frasser,
Alejandro Morán,
Vincent Canals
et al.
Abstract:Deploying modern neural networks on resource-constrained edge devices necessitates a series of optimizations to ready them for production. These optimizations typically involve pruning, quantization, and fixed-point conversion to compress the model size and enhance energy efficiency. While these optimizations are generally adequate for most edge devices, there exists potential for further improving the energy efficiency by leveraging special-purpose hardware and unconventional computing paradigms. In this stud… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.