The rapid growth of traffic demands has posed challenges and difficulties on both the radio access networks (RANs) and the backhaul links. While heterogeneous networks (HetNets) are expected to offer diverse radio access capabilities and improve the transmission performance of user equipments (UEs) significantly through integrating various RANs efficiently, the backhaul links may still experience challenges in offering quality of service (QoS) guaranteed services to UEs. To tackle these problems, caching technology, more specifically, caching user contents at the infrastructures of different RANs is proposed as an effective approach. In this paper, we consider the joint user association and cache content placement problem in cache-enabled HetNets. Stressing the tradeoff between user download delay and caching cost, we introduce the concept of utility function which characterizes the joint network performance as the weighted sum of user download delay and the caching cost and formulate the joint user association and cache content placement problem as a network utility optimization problem. As the formulated optimization problem is a nonlinear integer optimization problem which cannot be solved conveniently using traditional optimization tools, we transform the original optimization problem equivalently into three convex subproblems by applying Lagrange partial relaxation and McCormick envelopes, and then propose an iterative algorithm. Within each iteration, for a given set of Lagrange multipliers, the three subproblems are solved respectively by means of the modified Kuhn-Munkres (K-M) algorithm and the locally optimal solutions can be obtained, based on which the Lagrange multipliers can be updated through applying subgradient method. Simulation results demonstrate the effectiveness of the proposed algorithm.