This paper is concerned with the discretization of the fractional-order differentiator and integrator, which is the foundation of the digital realization of fractional order controller. Firstly, the parameterized Al-Alaoui transform is presented as a general generating function with one variable parameter, which can be adjusted to obtain the commonly used generating functions (e.g. Euler operator, Tustin operator and Al-Alaoui operator). However, the following simulation results show that the optimal variable parameters are different for different fractional orders. Then the weighted square integral index about the magtitude and phase is defined as the objective functions to achieve the optimal variable parameter for different fractional orders. Finally, the simulation results demonstrate that there are great differences on the optimal variable parameter for differential and integral operators with different fractional orders, which should be attracting more attentions in the design of digital fractional order controller.