Optimizing Crop Yield Prediction: Data-Driven Analysis and Machine Learning Modeling Using USDA Datasets
Ravindra Yadav,
Anita Seth,
Naresh Dembla
Abstract:This research uses a variety of machine learning models and exploratory data analysis (EDA) to forecast crop yields using USDA information from 2003 to 2013 in an effort to achieve precision agriculture. Not only did we want to predict agricultural output, but we also wanted to identify the underlying factors that affect yield. By means of thorough EDA, which encompassed a wide range of agricultural data, including weather patterns and USDA-sourced soil composition, we were able to gain important insights into… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.