Mobile ad hoc networks (MANETs) are autonomous systems composed of multiple mobile nodes that communicate wirelessly without relying on any pre-established infrastructure. These networks operate in highly dynamic environments, which can compromise their ability to guarantee consistent link lifetimes, security, reliability, and overall stability. Factors such as mobility, energy availability, and security critically influence network performance. Consequently, the selection of paths and relay nodes that ensure stability, security, and extended network lifetimes is fundamental in designing routing protocols for MANETs. This selection is pivotal in maintaining robust network operations and optimizing communication efficiency. This paper introduces a sophisticated algorithm for selecting multipoint relays (MPRs) in MANETs, addressing the challenges posed by node mobility, energy constraints, and security vulnerabilities. By employing a multicriteria-weighted technique that assesses the mobility, energy levels, and trustworthiness of mobile nodes, the proposed approach enhances network stability, reachability, and longevity. The enhanced algorithm is integrated into the Optimized Link State Routing Protocol (OLSR) and validated through NS3 simulations, using the Random Waypoint and ManhattanGrid mobility models. The results indicate superior performance of the enhanced algorithm over traditional OLSR, particularly in terms of packet delivery, delay reduction, and throughput in dynamic network conditions. This study not only advances the design of routing protocols for MANETs but also significantly contributes to the development of robust communication frameworks within the realm of smart mobile communications.