“…Doing so will allow the tool to be more widely used and facilitate in-depth studies of Twinkle's capabilities. These could include modeling various atmospheric scenarios for each planet to judge its suitability for characterization (e.g., Fortenbach & Dressing 2020), performing retrievals on populations of exoplanets (e.g., Changeat et al 2020), classifying groups of planets via color-magnitude diagrams (e.g., Dransfield & Triaud 2020), testing machinelearning techniques for atmospheric retrieval (e.g., Márquez-Neila et al 2018;Hayes et al 2020;, or the exploration of potential biases in current data analysis techniques (e.g., Feng et al 2016;Rocchetto et al 2016;Caldas et al 2019;Changeat et al 2019;Powell et al 2019;MacDonald et al 2020;Taylor et al 2020). Additionally, thorough analyses of Twinkle's capabilities for specific scientific endeavors, such as confirming/refuting the presence of thermal inversions and identifying optical absorbers in ultrahot Jupiters (e.g., Fortney et al 2008;Spiegel et al 2009;Haynes et al 2015;Evans et al 2018;Parmentier et al 2018;Edwards et al 2020;Pluriel et al 2020;von Essen et al 2020;Changeat & Edwards 2021), searching for an exoplanet mass-metallicity trend (e.g., Wakeford et al 2017;Welbanks et al 2019), probing the atmospheres of planets in/close to the radius valley to discern their true nature (e.g., Owen & Wu 2017;Fulton & Petigura 2018;Zeng et al 2019), refining basic planetary and orbital characteristics (e.g., Berardo et al 2019;Dalba & Tamburo 2019;Livingston et al 2019), measuring planet masses through accurate transit timings (e.g., Hadden & Lithwick 2017;Grimm et al 2018;…”