2021
DOI: 10.20944/preprints202109.0389.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Optimizing Few-Shot Learning based on Variational Autoencoders

Abstract: Despite the importance of few-shot learning, the lack of labeled training data in the real world, makes it extremely challenging for existing machine learning methods as this limited data set does not represent the data variance well. In this research, we suggest employing a generative approach using variational autoencoders (VAEs), which can be used specifically to optimize few-shot learning tasks by generating new samples with more intra-class variations. The purpose of our research is to increase the size o… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 47 publications
0
0
0
Order By: Relevance