We validate the framework in simulation and also run experiments in a robotic testbed with three Turtlebot 2 robots. Additionally, we leverage the power of simulation as a schedule evaluation tool. We present risk and probabilistic analysis that enable users to assess when to readjust tasks' constraints to improve task completion. Taken together, this thesis proposes methods that divide tasks and constraints among the robots, such that each robot controls a subset of the constraints. This decomposition leads to low computational costs, flexibility to handle local failures, and greater individual robot autonomy. These features are important in designing responsive systems for groups of robots that operate in environments where exogenous events are common and may affect robot performance.