This paper presents the design and usability evaluation of an Arabic keyboard for applications that predominantly use single-pointer input device. Such applications are particularly used in mobile devices like Portable Data Assistants (PDAs) and smartphones. They are also valuable in gaze-controlled interfaces that constitute a growing mode of communication and that particularly empower people with mobility impairments. A special focus is given to the optimization of the key arrangement based on the movement time and character transition frequencies. An optimization model as well as a Simulated Annealing algorithm are presented. Then, the performance of the optimized layout is assessed showing that it outperforms the commonly used Arabic keyboard in terms of the estimated typing speed. However, the main limitation that the new layout might face is that a new arrangement of keys may not be adopted by users, even if the currently used layouts are not optimum. Therefore, a usability evaluation of the optimized layouts was conducted using eye-tracking and task-based testing involving the end-users and considering both objective and subjective measures of usability. Implications for the design are also discussed.