Abstract:Recently, the information-theoretical framework has been proven to be able to obtain non-vacuous generalization bounds for large models trained by Stochastic Gradient Langevin Dynamics (SGLD) with isotropic noise. In this paper, we optimize the information-theoretical generalization bound by manipulating the noise structure in SGLD. We prove that with constraint to guarantee low empirical risk, the optimal noise covariance is the square root of the expected gradient covariance if both the prior and the posteri… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.