Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Hemp (Cannabis sativa L.), renowned for its applications in environmental, industrial, and medicinal fields, is critically evaluated in this comprehensive review focusing on the impacts of chemical and organic fertilizers on its cultivation. As hemp re-emerges as a crop of economic significance, the choice between chemical and organic fertilization methods plays a crucial role in determining not only yield but also the quality and sustainability of production. This article examines the botanical characteristics of hemp, optimal growth conditions, and the essential biochemical processes for its cultivation. A detailed comparative analysis is provided, revealing that chemical fertilizers, while increasing yield by up to 20% compared to organic options, may compromise the concentration of key phytochemicals such as cannabidiol by approximately 10%, highlighting a trade-off between yield and product quality. The review presents quantitative assessments of nitrogen (N), phosphorus (P), and potassium (K) from both fertilizer types, noting that K significantly influences the synthesis of terpenes and cannabinoids, making it the most impactful element in the context of medicinal and aromatic hemp varieties. Optimal rates and timing of application for these nutrients are discussed, with a focus on maximizing efficiency during the flowering stage, where nutrient uptake directly correlates with cannabinoid production. Furthermore, the challenges associated with the U.S. industrial hemp market are addressed, noting that reducing production costs and improving processing infrastructure is essential for sustaining industry growth, especially given the slow expansion in fiber and cannabidiol markets due to processing bottlenecks. The review concludes that while chemical fertilizers may offer immediate agronomic benefits, transitioning towards organic practices is essential for long-term environmental sustainability and market viability. The future of the hemp industry, while promising, will depend heavily on advancements in genetic engineering, crop management strategies, and regulatory frameworks that better support sustainable cultivation practices. This nuanced approach is vital for the industry to navigate the complex trade-offs between productivity, environmental health, and economic viability in the global market.
Hemp (Cannabis sativa L.), renowned for its applications in environmental, industrial, and medicinal fields, is critically evaluated in this comprehensive review focusing on the impacts of chemical and organic fertilizers on its cultivation. As hemp re-emerges as a crop of economic significance, the choice between chemical and organic fertilization methods plays a crucial role in determining not only yield but also the quality and sustainability of production. This article examines the botanical characteristics of hemp, optimal growth conditions, and the essential biochemical processes for its cultivation. A detailed comparative analysis is provided, revealing that chemical fertilizers, while increasing yield by up to 20% compared to organic options, may compromise the concentration of key phytochemicals such as cannabidiol by approximately 10%, highlighting a trade-off between yield and product quality. The review presents quantitative assessments of nitrogen (N), phosphorus (P), and potassium (K) from both fertilizer types, noting that K significantly influences the synthesis of terpenes and cannabinoids, making it the most impactful element in the context of medicinal and aromatic hemp varieties. Optimal rates and timing of application for these nutrients are discussed, with a focus on maximizing efficiency during the flowering stage, where nutrient uptake directly correlates with cannabinoid production. Furthermore, the challenges associated with the U.S. industrial hemp market are addressed, noting that reducing production costs and improving processing infrastructure is essential for sustaining industry growth, especially given the slow expansion in fiber and cannabidiol markets due to processing bottlenecks. The review concludes that while chemical fertilizers may offer immediate agronomic benefits, transitioning towards organic practices is essential for long-term environmental sustainability and market viability. The future of the hemp industry, while promising, will depend heavily on advancements in genetic engineering, crop management strategies, and regulatory frameworks that better support sustainable cultivation practices. This nuanced approach is vital for the industry to navigate the complex trade-offs between productivity, environmental health, and economic viability in the global market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.