Optimizing Metro Passenger Flow Prediction: Integrating Machine Learning and Time-Series Analysis with Multimodal Data Fusion
Li Wan,
Wenzhi Cheng,
Jie Yang
Abstract:Accurate passenger flow forecasting is crucial in urban areas with growing transit demand. In this paper, we propose a method that combines advanced machine learning with rigorous time series analysis to improve prediction accuracy by integrating different datasets, providing a prescriptive example for passenger flow prediction in urban rail transit systems. The study employs advanced machine learning algorithms and proposes a novel prediction model that combines two-stage decomposition (seasonal and trend dec… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.