The storage and transfer of energy through quantum batteries are key elements in quantum networks. Here, we propose a charger design based on transitionless quantum driving (TQD), which allows for inherent control over the battery charging time, with the speed of charging coming at the cost of the internal energy available to implement the dynamics. Moreover, the TQD-based charger is also shown to be locally stable, which means that the charger can be disconnected from the quantum battery (QB) at any time after the energy transfer to the QB, with no full energy backflow to the charger. This provides a highly charged QB in an always-on asymptotic regime. We illustrate the robustness of the QB charge against time fluctuations and the full control over the evolution time for a feasible TQD-based charger.