2019 International Conference on Nascent Technologies in Engineering (ICNTE) 2019
DOI: 10.1109/icnte44896.2019.8946091
|View full text |Cite
|
Sign up to set email alerts
|

Optimizing Nutrition using Machine Learning Algorithms-a Comparative Analysis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 6 publications
0
2
0
Order By: Relevance
“…For this purpose, three levels of quality have been defined: High (H) the articles with a score between 8 and 11, Medium (M) between 5.1 and 7.9, and Low (L) less than 5. After the qualification, we can affirm that within the metrics used in this study, the articles [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31] are of high impact.…”
Section: Resultsmentioning
confidence: 68%
“…For this purpose, three levels of quality have been defined: High (H) the articles with a score between 8 and 11, Medium (M) between 5.1 and 7.9, and Low (L) less than 5. After the qualification, we can affirm that within the metrics used in this study, the articles [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31] are of high impact.…”
Section: Resultsmentioning
confidence: 68%
“…Calorie, protein, fat and carbohydrate counts are important in health care and diet management because they can be accurately predicted and analysed (Khan, Deshpande, and Tripathy 2019). Routine health information from the health management information system (HMIS) was analysed in this study to see whether it was being used effectively.…”
Section: Introductionmentioning
confidence: 99%
“…Beberapa penelitian menujukkan kinerja kedua algoritma tersebut cukup optimal untuk diterapkan dalam penelitian ini dibanding jenis algoritma lain. Seperti penelitian yang menggunakan random forest dan support vector machine untuk klasifikasi makanan dengan hasil akurasi kedua algoritma yang tidak mencapai 90% [7]. Selain itu, metode knapsack juga pernah digunakan dalam penelitian terkait rekomendasi makanan yang mempertimbangkan penyakit kronis, namun hasilnya memiliki kompleksitas waktu yang tidak cukup baik [8].…”
unclassified