2021
DOI: 10.1016/j.apenergy.2021.117158
|View full text |Cite
|
Sign up to set email alerts
|

Optimizing operational costs and PV production at utility scale: An optical fiber network analogy for solar park clustering

Abstract: Modeling analogy with optical network design for optimal PV site clustering • Enhanced risk management of operational costs and energy stability • Comparative study with an existing GIS-optimization model on real data • Novel implementation strategy for PV site selection at utility scale

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2025
2025

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(1 citation statement)
references
References 36 publications
0
1
0
Order By: Relevance
“…Compare the calculated value of EENSbase$EEN{S}^{{\rm{base}}}$ and EENSDR$EEN{S}^{{\rm{DR}}}$. If EENSbase<EENSDR$EEN{S}^{base} &lt; EEN{S}^{DR}$, then set the CC of IDC demand response is 0; Otherwise, perform the following steps: (4‐1) Define two auxiliary variables Gmax${G}_{\max }$ and Gmin${G}_{\min }$, and let Gmax=Grat${G}_{\max } = {G}^{rat}$, Gmin=0${G}_{\min } = 0$, where Grat${G}^{rat}$ is a positive real number given artificially. (4‐2) In the scenario where IDC does not participate in the demand response, it is assumed that a virtual benchmark generator unit is added at the IDC grid connected location, its configured capacity is Gbm=(Gmax+Gmin)/2${G}^{bm} = ( {{G}_{\max } + {G}_{\min }} )/2$, and the reliability parameter FOR is equal to 0.08%, which is the same as the current conventional generator set [39]. (4‐3) The sequential Monte‐Carlo simulation method is used to evaluate the EENS index of the power system and record it as EENSν$EEN{S}^\nu $. (4‐4) Compare the obtained EENSν$EEN{S}^\nu $ and EENSDR$EEN...…”
Section: Methodsmentioning
confidence: 99%
“…Compare the calculated value of EENSbase$EEN{S}^{{\rm{base}}}$ and EENSDR$EEN{S}^{{\rm{DR}}}$. If EENSbase<EENSDR$EEN{S}^{base} &lt; EEN{S}^{DR}$, then set the CC of IDC demand response is 0; Otherwise, perform the following steps: (4‐1) Define two auxiliary variables Gmax${G}_{\max }$ and Gmin${G}_{\min }$, and let Gmax=Grat${G}_{\max } = {G}^{rat}$, Gmin=0${G}_{\min } = 0$, where Grat${G}^{rat}$ is a positive real number given artificially. (4‐2) In the scenario where IDC does not participate in the demand response, it is assumed that a virtual benchmark generator unit is added at the IDC grid connected location, its configured capacity is Gbm=(Gmax+Gmin)/2${G}^{bm} = ( {{G}_{\max } + {G}_{\min }} )/2$, and the reliability parameter FOR is equal to 0.08%, which is the same as the current conventional generator set [39]. (4‐3) The sequential Monte‐Carlo simulation method is used to evaluate the EENS index of the power system and record it as EENSν$EEN{S}^\nu $. (4‐4) Compare the obtained EENSν$EEN{S}^\nu $ and EENSDR$EEN...…”
Section: Methodsmentioning
confidence: 99%