Shift-frequency jamming is generally used to form range false targets for ground-based early-warning radar systems; the frequency shift value of such interference is larger than the Doppler shift value of the moving target, and the key element to suppress the shiftfrequency jamming is the frequency shift value estimation. However, in the low-or medium-pulse repetition frequency (PRF) mode, it is challenging to estimate the accurate frequency shift due to the velocity ambiguity. To solve this problem, a novel sparse Doppler-sensitive waveform is designed based on the ambiguity function theory, where the basic idea is to design a waveform sensitive to a specific Doppler but insensitive to other Dopplers; therefore, this waveform can recognize the specific Doppler of the target unambiguously. To apply the designed waveform in practice, the detection and estimation processing flow is provided based on the waveform diversity technique and the family of the sparse Doppler-sensitive waveforms. Simulation experiments are presented to validate the efficiency of the proposed method, and we conclude that the advantage of this method is that it can be used to confirm the specific Doppler of the target unambiguously with few pulses even under the condition of a low PRF.