2017
DOI: 10.1088/1742-6596/930/1/012026
|View full text |Cite
|
Sign up to set email alerts
|

Optimizing Support Vector Machine Parameters with Genetic Algorithm for Credit Risk Assessment

Abstract: Abstract. Support vector machine (SVM) is a popular classification method known to have strong generalization capabilities. SVM can solve the problem of classification and linear regression or nonlinear kernel which can be a learning algorithm for the ability of classification and regression. However, SVM also has a weakness that is difficult to determine the optimal parameter value. SVM calculates the best linear separator on the input feature space according to the training data. To classify data which are n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
3

Year Published

2019
2019
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 13 publications
(8 citation statements)
references
References 4 publications
0
5
0
3
Order By: Relevance
“…Recently, many researches have been presented in machine learning database improvement area and data base storage techniques. The presented research in [13] and [14] prove the power of machine learning algorithms to deal with storage and retrieval using document-based or relational data storage. Other researches concentrate on enhancing data storage performance for data sets, they illustrate the necessity of distributed computing systems improvement.…”
Section: Related Workmentioning
confidence: 87%
“…Recently, many researches have been presented in machine learning database improvement area and data base storage techniques. The presented research in [13] and [14] prove the power of machine learning algorithms to deal with storage and retrieval using document-based or relational data storage. Other researches concentrate on enhancing data storage performance for data sets, they illustrate the necessity of distributed computing systems improvement.…”
Section: Related Workmentioning
confidence: 87%
“…Algoritme klasifikasi C4.5 dan Naïve Bayes dapat digunakan untuk membantu pengambilan keputusan pemberian kredit dan menganalisa kemampuan nasabah dalam membayar kredit [6]. Algoritme genetika diusulkan dalam [7] untuk diterapkan sebagai algoritme pencarian nilai parameter optimal sehingga meningkatkan akurasi klasifikasi terbaik pada Support Vector Machine (SVM). Algoritma information gain digunakan dalam [8] untuk menghitung bobot dari masing masing atribut dataset persetujuan kredit dengan klasifikasi menggunakan algoritme K-Nearest Neighbour (KNN).…”
Section: Pendahuluanunclassified
“…mewakili fitur yang ada di Tabel 1. 3: Dengan subtitusi X, rule yang didapat selanjutnya untuk dimasukkan nilai dataset Penelitian ini menyertakan atribut individu nasabah seperti status (menikah, lajang, janda/duda), status tempat tinggal, jumlah tanggungan, pendidikan yang tidak terdapat pada [6], [7], dan [9], sehingga menghasilkan akurasi yang lebih tinggi. Penerapan algoritme Naïve Bayes menghasilkan akurasi lebih tinggi dari [9] yang menerapkan forward selection pada algoritme Naïve Bayes dengan hasil akurasi sebesar 71,97%.…”
Section: Metode Penelitianunclassified
See 1 more Smart Citation
“…Genetic Algorithm (GA) is relatively complicated but can locate global optimum while Particle Swarm Optimization (PSO) is not complex and possesses high convergence rate. Both of these methods are continually applied to parameters optimization of Gaussian kernel SVM [4,9,25,30,33,37] .…”
Section: Introductionmentioning
confidence: 99%