It has long been anticipated that the ultimate in miniature circuitry will be crafted of single atoms. Despite many advances made in scanned probe microscopy studies of molecules and atoms on surfaces, challenges with patterning and limited thermal stability have remained.Here we make progress toward those challenges and demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen-terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk band gap, circumventing short-circuiting by the substrate. We deploy paired dangling bonds occupied by one moveable electron to form a binary electronic building block.Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position allowing demonstration of a "binary wire" and an OR gate.The prospect of atom scale computing was initially indicated by "molecular cascades"where sequentially toppling molecules were arranged in precise configurations to achieve binary logic functions 1 . Many notable approaches toward molecular electronics 2-7 , atomic electronics 8,9 , and quantum-dot-based electronics 10-15 have also been explored.The quantum dot based approaches [16][17][18][19][20] are particularly attractive, as they provide a low power yet fast basis 21 to go beyond today's CMOS technology 22 . These approaches, however, require cryogenic temperatures to minimize the population of thermally-excited states and achieve the desired functionality. Variability among quantum dots and sensitivity to uncontrolled fields are