The wait times for patients from their appointments to receiving magnetic resonance imaging (MRI) are usually long. To reduce this wait time, the present study proposed that service time wastage could be reduced by adjusting MRI examination scheduling by prioritizing patients who require examinations involving the same type of coil. This approach can reduce patient wait times and thereby maximize MRI departments’ service times. To simulate an MRI department’s action workflow, 2,447 MRI examination logs containing the deidentified information of patients and radiation technologists from the MRI department of a medical center were used, and a hybrid simulation model that combined discrete-event and agent-based simulations was developed. The experiment was conducted in two stages. In the first stage, the service time was increased by adjusting the examination schedule and thereby reducing the number of coil changes. In the second stage, the maximum number of additional patients that could be examined daily was determined. The average number of coil changes per day for the four MRI scanners of the aforementioned medical center was reduced by approximately 27. Thus, the MRI department gained 97.17 min/d, which enabled them to examine three additional patients per month. Consequently, the net monthly income of the hospital increased from US$17,067 to US$30,196, and the patient wait times for MRI examinations requiring the use of flexible torso and head, shoulder, 8-inch head, and torso MRI coils were shortened by 6 d and 23 h, 2 d and 15 h, 2 d and 9 h, and 16 h, respectively. Adjusting MRI examination scheduling by prioritizing patients that require the use of the same coil could reduce the coil-setting time, increase the daily number of patients who are examined, increase the net income of the MRI department, and shorten patient wait times for MRI examinations. Minimizing the operating times of specific examinations to maximize the number of services provided per day does not require additional personnel or resources. The results of the experimental simulations can be used as a reference by radiology department managers designing scheduling rules for examination appointments.