BSTRACT: The modem trickling filter typically includes the following major components: (1) rotary distributors with speed control; (2) modular plastic media (typically cross-flow media unless the bioreactor is treating high-strength wastewater. which warrants the use of vertical-flow media); (3) a mechanical aeration system (that consists of air distribution piping and low-pressure fans); (4) influent/recirculation pump station; and (5) covers that aid in the uniform distribution of air and foul air containment (for odor control). Covers may be equipped with sprinklers that can spray in-plant washwater to cool the media during emergency shut down periods. Trickling fliter mechanics are poorly understood. Consequently, there is a general lack of mechanistic mathematical models and design approaches, and the design and operation of trickling filter and trickling filter/suspended growth (TF/SG) processes is empirical. Some empirical trickling filter design criteria are described in this paper. Benefits inherent to the trickling filter process (when compared with activated sludge processes) include operational simplicity, resistance to toxic and shock loads, and low energy requirements. However, trickling filters are susceptible to nuisance conditions that are primarily caused by macro fauna. Process mechanical components dedicated to minimizing the accumulation of macro fauna such as fliter flies, worms, and snail (shells) are now standard. Unfortunately, infonnation on the selection and design of these process components is fragmented and has been poorly documented. The trickling filter/solids contact process is the most common TF/SG process. This paper summarizes state-of-the art design and operational practice for the modem trickling filter. Water Environ. Res., »3, 388 (2011).