In this paper, a Tm:fiber laser pumped Ho:YLF laser is simulated. The absorption efficiency, optimum crystal length, and optical resonator are analytically studied and simulated using LASCAD software, and the atomic-level degeneracies are considered in evaluating the absorption efficiency. In this way, the absorption efficiencies of 65% and 87% are obtained for single-pass 30 mm Ho:YLF crystal with doping concentration 0.5% and 1% respectively. These calculated efficiencies are verified by our experimental measurements and they coincide with acceptable errors. To estimate a proper length for the Ho:YLF crystal with specified doping concentration, the up-conversion, and the reabsorption effects are considered. As a result, we find the 30 mm length crystal is suited for reducing the absorption threshold and prohibiting reabsorption while saturation is controlled. The threshold power and slope efficiency for 65 W pumped powers are calculated by LASCAD software, and the thermal lens focal length of −665 mm is obtained. For a nearly constant beam width inside the cavity and suitable beam overlap efficiency, a concave-concave configuration is chosen for the optical resonator. In the continuous-wave operation, the output power is funded to be 38.4 W and the slope efficiency would be 66%.