2021
DOI: 10.1049/rpg2.12261
|View full text |Cite
|
Sign up to set email alerts
|

Optimum heat spreader size for producing maximum net power from high‐concentration photovoltaic systems

Abstract: The present study introduces an analytical approach for predicting net power for highconcentrating photovoltaic systems (HCPV). Wind speed, surface radiation, and size of the backplate, which acts as a heat spreader, were found to be of high impact in increasing solar cell efficiency and maximum produced power. The efficiency increased by 5% as the wind shifted from light air (0.5 m/s) to fresh breeze (10 m/s). Also, it increased by 1.64% as the aluminium backplate shifted from a shiny (ɛ = 0) to a dark (ɛ = 1… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 40 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?