The technique of filter banks has been extensively applied in signal processing in the last three decades. It provides a very efficient way of signal decomposition, characterization, and analysis. It is also the main driving idea in almost all frequency division multiplexing technologies. With the advent of wavelets and subsequent realization of its wide area of application, filter banks became even more important as it has been proven to be the most efficient way a wavelet system can be implemented. In this chapter, we present an analysis of the design of a wavelet transform using the filter bank technique. The analysis covers the different sections which make up a filter bank, i.e., analysis filters and synthesis filters, and also the upsamplers and downsamplers. We also investigate the mathematical properties of wavelets, which make them particularly suitable in the design of wavelets. The chapter then focuses attention to the particular role the analysis and the synthesis filters play in the design of a wavelet transform using filter banks. The precise procedure by which the design of a wavelet using filter banks can be achieved is presented in the last section of this chapter, and it includes the mathematical techniques involved in the design of wavelets.