Thickness-sensitive, spectrally selective paints based on a silane treatment of pigments were prepared with different pigment-volume concentrations. The critical pigment-volume concentration was determined by means of electrochemical impedance spectroscopy, while the pigment particle size distribution was determined with ultrasound spectroscopy. The selectivity versus thickness relation of a paint with a near-critical pigment-volume concentration was studied spectroscopically through performance criteria. Its nonlinearity was shown to be related to the surface topography. This relation was further supported by hydrophobicity measurements. Heat-gathering tests in a simulated solar collector supported the spectroscopic determination of an optimal dry-film thickness.