2019
DOI: 10.1142/s242478631950018x
|View full text |Cite
|
Sign up to set email alerts
|

Option pricing in a subdiffusive constant elasticity of variance (CEV) model

Abstract: In this paper, we extend the classical constant elasticity of variance (CEV) model to a subdiffusive CEV model, where the underlying CEV process is time changed by an inverse [Formula: see text]-stable subordinator. The new model can capture the subdiffusive characteristics of financial markets. We find the corresponding fractional Fokker–Planck equation governing the PDF of the new process. We also derive the analytical formula for option prices in terms of eigenfunction expansion. This method avoids the eval… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 27 publications
0
0
0
Order By: Relevance