Hard x-ray Free electron lasers (FEL) are being built or proposed at many accelerator laboratories as it supports wide range of applications in many aspects. Most of the hard x-ray FEL design is similar with the SLAC Linac Coherent Light Source (LCLS), which features a two (or multiple) stage bunch compression. For the first stage of the bunch compression, usually the beam is accelerated in a lower-frequency RF section (such as S-band for LCLS), and then the longitudinal phase space is linearized by a higher-frequency RF section (harmonic RF, such as X-band for LCLS). In this paper, a compact hard x-ray FEL design is proposed, which is based on X-band RF acceleration and eliminating the need of a harmonic RF. The parameter selection and relation is discussed, and the longitudinal phase space simulation is presented.
OverviewFree electron lasers ( The FEL coherence condition of the electron beam in the undulators requires a large charge density, a small emittance and small energy spread. The RMS electron bunch length from the injector is in the ps scale, with a bunch charge in the range of hundreds pC to several nC, which means that the current is roughly 0.1 kA. According to the requirement from soft x-ray lasing and hard x-ray lasing, a peak current of 1 kA and 3 kA is needed respectively. Thus the bunch has to be compressed. Usually a two stage bunch compression or multipole stage bunch compression is adopted. The z-correlated energy chirp is normally established by letting the beam pass through a section of RF cavities, with a RF phase off crest. As stated above, S-band RF (3 GHz) acceleration could be applied in this section. Due to the nature of RF acceleration wave, the chirp on the bunch is not linear, but has the RF curvature on it. In order to linearize the energy chirp, a harmonic RF section with higher frequency is needed. For LCLS a short X-band RF section (12 GHz) is used which is a fourth order harmonic.The linearized bunch is then passing by a dispersive region, in which the particles with different energy have different path length. A four dipole chicane is the natural choice for the dispersive region. As the example illustrated in Figure 1, the head of the bunch has smaller energy, and gets a stronger bending kick from the dipole magnet, then has a longer path length in the dispersive region. Similarly, the tail of the bunch has larger energy and shorter path length in the dispersive region. At the exit of the dispersive region, the relative longitudinal position of the head and tail of the bunch both move to the center of the bunch, so the bunch length will be shorter.
X-band FEL driverAnother way to do the bunch compression, is to eliminate the harmonic RF section, and replace the four dipole chicane by a dispersive region which has special higher order longitudinal dispersion terms. This option may have the advantage of compact size at same energy, as it only uses X-band acceleration structures which can provide a much * Electronic address: