To what extent, if any, is the conformation of secondary amides revealed by theory? This question has now been addressed by computational methods using calculations at the B3LYP/6-31G level of theory and (1)H NMR spectroscopy. Both gas-phase and solvent studies predict a Z-anti conformation to be the lowest in energy for an evaluated series of acetamides. Moreover, Z-anti conformations may also be inferred from the chemical shifts of the N-CH alpha protons determined by NMR spectroscopy. Thus, a proton situated anti to the N-H proton consistently appears approximately 0.8 ppm further downfield than a proton situated gauche to the N-H proton. This finding, which could only be derived by using the DFT calculations of conformational preference as a guide to interpret the NMR data, might prove to be useful as a simple and convenient methodology for establishing amide conformation experimentally.