We report on a common-path implementation of conoscopic interferometry in picosecond pump-probe reflectometry for simple and efficient detection of picosecond ultrasounds. The interferometric configuration proposed here is greatly simplified, involving only the insertion of a birefringent crystal in a standard reflectometry setup. Our approach is demonstrated by the optical detection of coherent acoustic phonons propagating through thin metal films under two representative geometries, one a particular case where the crystal slab is part of a sample as substrate of a metal film, and the other a more general case where the crystal slab is independent of the sample as part of the detection system. We first illustrate the former with a 300 nm thin film of polycrystalline titanium, deposited by physical vapor deposition on top of a 1 mm-thick uniaxial (0001) sapphire crystal. A signal-to-noise ratio (SNR) enhancement of more than 15 dB is achieved compared to conventional reflectometry. Next, the general case is demonstrated with a 900 nm-tungsten film sputtered on a silicon wafer substrate. More echoes can be discriminated by using the reported approach compared to standard reflectometry, which confirms the improvement in SNR and suggests broad applications for the reported method.