Fluorescence lifetime-based chemical sensors have recently been described for applications in medicine, environmental monitoring, and bioprocess control. These sensors transduce the level of the analyte as a change in the apparent fluorescence lifetime of an indicator phase. We have previously developed a wavelength-ratiometric fluorescence biosensor for zinc based on binding of zinc and dansylamide to apo-carbonic anhydrase which exhibited high sensitivity and selectivity. We demonstrate that the apo-carbonic anhydrase/dansylamide indicator system is very well suited for lifetime-based sensing, with a subnanomolar detection limit and greater than 1000-fold dynamic range. The theoretical basis for the wide dynamic range is discussed.