We carried out the experimental measurements of photoacoustic responses, where the suspensions of spherical gold nanoparticles (NPs) of different diameters (20, 40, and 50 nm) in water at different concentrations and different temperatures (4 and 20 °C) were irradiated by 0.8-ns laser pulses. In the case of 20 °C, the values of photoacoustic signals normalized by the light absorbance of the NP suspension decreased with increasing the NP size. The photoacoustic signals at 4 °C were significantly reduced compared with those at 20 °C. These experimental results are in fair agreement with the estimations from our phenomenological model, where the acoustic pressure pulse is represented by a sum of two contributions from the NPs and the surrounding liquid medium.