The reaction of 3,4-dinitropyrazole, 5-nitrotetrazole, or 4-nitro-1,2,3-triazole with 1,2,4,5-tetrazines substituted with 3,5-dimethylpyrazolyl (dmp) groups results in energetic cocrystals after 1 minute of reflux and cooling to room temperature in yields of 89-92 %. Hydrogen-bonding between the dmp group to the N-H of the energetic heterocycles are the predominant interaction that stabilizes the new cocrystals. Each cocrystal packs in a different lattice structure and the cocrystals with sheet-like and herring-bone crystal packing orientations are less sensitive than the cocrystal with the interlocked structure. Electrostatic potential mapping helps rationalize why dmp-substituted tetrazines readily form cocrystals, whereas more electron-deficient pyrazolyl tetrazines do not. The calculated energetic performance of the new cocrystals approaches that of 2,4,6-trinitrotoluene (TNT) and importantly, these materials will aid in the rational design of new cocrystalline energetic materials.