Optical manipulation has emerged as a pivotal tool in soft matter research, offering superior applicability, spatiotemporal precision, and manipulation capabilities compared to conventional methods. Here, an overview of the optical mechanisms governing the interaction between light and soft matter materials during manipulation is provided. The distinct characteristics exhibited by various soft matter materials, including liquid crystals, polymers, colloids, amphiphiles, thin liquid films, and biological soft materials are highlighted, and elucidate their fundamental response characteristics to optical manipulation techniques. This knowledge serves as a foundation for designing effective strategies for soft matter manipulation. Moreover, the diverse range of applications and future prospects that arise from the synergistic collaboration between optical manipulation and soft matter materials in emerging fields are explored.