Motivated by a recent proposal on the possibility of observing a monopole in the band structure, and by an increasing interest on the role of Berry phase in spintronics, we studied the adiabatic motion of a wave packet of Bloch functions, under a perturbation varying slowly and incommensurately to the lattice structure. We show, using only the fundamental principles of quantum mechanics, that the effective wave-packet dynamics is conveniently described by a set of equations of motion (EOM) for a semiclassical particle coupled to a nonabelian gauge field associated with a geometric Berry phase.Our EOM can be viewed as a generalization of the standard Ehrenfest's theorem, and their derivation was asymptotically exact in the framework of linear response theory. Our analysis is entirely based on the concept of local Bloch bands, a good starting point for describing the adiabatic motion of a wave packet. One of the advantages of our approach is that the various types of gauge fields were classified into two categories by their different physical origin: (i) projection onto specific bands, (ii) timedependent local Bloch basis. Using those gauge fields, we write our EOM in a covariant form, whereas the gauge-invariant field strength stems from the noncommutativity of covariant derivatives along different axes of the reciprocal parameter space. On the other hand, the degeneracy of Bloch bands makes the gauge fields nonabelian.For the purpose of applying our wave-packet dynamics to the analyses on transport phenomena in the context of Berry phase engineering, we focused on the Hall-type and polarization currents. Our formulation turned out to be useful for investigating and classifying various types of topological current on the same footing. We highlighted their symmetries, in particular, their behavior under time reversal (T ) and space inversion (I).