We study a two dimensional, two-band double-exchange model for eg electrons coupled to JahnTeller distortions in the presence of quenched disorder using a recently developed Monte-Carlo technique. In the absence of disorder the half-filled system at low temperatures is an orbitally ordered ferromagnetic insulator with a staggered pattern of Jahn-Teller distortions. We examine the finite temperature transition to the orbitally disordered phase and uncover a qualitative difference between the intermediate and strongly coupled systems, including a thermally driven insulator to metal crossover in the former case. Long range orbital order is suppressed in the presence of disorder and the system displays a tendency towards metastable states consisting of orbitally disordered stripe-like structures enclosing orbitally ordered domains.