An order-disorder transition occurs in 1-adamantanol at 359 K on heating and at 342 K on cooling, with transition entropies of 36 and 34 J K-' mol-I, respectively. R -i r spectra show that free hydroxyl groups exist in the high temperature phase, but the majority of the 0-H groups remain hydrogen bonded. The barrier to adamantyl group rotation in the low-temperature phase, determined from proton spin-lattice relaxation time measurements, is 20.9 kJ mol-I, and the barrier to rotation in the high-temperature phase is 35.0 kJ mol-I. PIERRE D. HARVEY, DENIS F. R. GILSON et IAN S. BUTLER. Can. J. Chem. 65, 1757(1987.Avec l'adamantanol-1, il se produit une transition ordreldCsordre i 359 K lorsqu'on chauffe et A 342 K lorsqu'on refroidit: les entropies de transition sont respectivement 36 et 34 J K-' mol-I. Les spectres ir/TF dCmontrent que des groupements hydroxyles libres existent dans la phase a haute tempkrature; toutefois, des liaisons hydrogknes relient encore la majorit6 des groupements 0-H. Dans la phase i basse tempkrature, la barrikre i i la rotation du groupement adamantyle, telle que dCterminCe i partir des temps de relaxation spinlrCseau des protons, est Cgale 20,9 kJ mol-'; dans la phase h haute temperature, la barrikre i la rotation est Cgale i 35,O kJ mol-I.[Traduit par la revue]
IntroductionThe cage hydrocarbon adamantane, C10H16, affords the best known example of an organic molecular crystal which undergoes an order-disorder phase transition. Simple substitution on the adamantyl skeleton does not prevent the transition from occurring, but can lead to a wide variation in the temperature and entropy of the transition. In many cases, the phase transitions occur below room temperature, and, therefore, the crystal structures of the ordered phases are seldom known. One particular exception is 1-adamantanol, in which the transition is reported to occur at 353 K with an entropy change of 40.6