The indoor positioning system (IPS) is becoming increasing important in accurately determining the locations of objects by the utilization of micro-electro-mechanical-systems (MEMS) involving smartphone sensors, embedded sources, mapping localizations, and wireless communication networks. Generally, a global positioning system (GPS) may not be effective in servicing the reality of a complex indoor environment, due to the limitations of the line-of-sight (LoS) path from the satellite. Different techniques have been used in indoor localization services (ILSs) in order to solve particular issues, such as multipath environments, the energy inefficiency of long-term battery usage, intensive labour and the resources of offline information collection and the estimation of accumulated positioning errors. Moreover, advanced algorithms, machine learning, and valuable algorithms have given rise to effective ways in determining indoor locations. This paper presents a comprehensive review on the positioning algorithms for indoors, based on advances reported in radio wave, infrared, visible light, sound, and magnetic field technologies. The traditional ranging parameters in addition to advanced parameters such as channel state information (CSI), reference signal received power (RSRP), and reference signal received quality (RSRQ) are also presented for distance estimation in localization systems. In summary, the recent advanced algorithms can offer precise positioning behaviour for an unknown environment in indoor locations.