Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As new advanced vehicles, electromagnetic suspension (EMS)-type maglev trains have received wide attention because of their advantages such as high speed, no mechanical friction, low noise, low cost and energy consumption, strong climbing ability, and green environmental protection. The open-loop instability is one of the key points and difficulties for the levitation control systems of maglev trains. The closed-loop feedback control method must be applied to realize stable levitation. However, there are currently many levitation control methods just in theory. Considering their advantages and disadvantages, it is a major demand for maglev trains to select efficient, stable, applicable, and cost-saving methods to improve their dynamic performance and safety, which motivated this review. First, the current status of research on maglev trains is introduced in this paper, including types, system components, and research modes in various countries, followed by an analysis of the levitation control methods for EMS-type maglev trains. Then, the technical characteristics of the levitation control systems are described according to the basic principles of levitation systems, model building, mathematical derivation, and control objectives. Next, three kinds of typical levitation control methods are reviewed, namely, linear state feedback methods, nonlinear control methods, and intelligent control methods, according to their improvements and applications. Lastly, we summarize and evaluate the advantages and disadvantages of the three methods, and future developments of levitation control are suggested.
As new advanced vehicles, electromagnetic suspension (EMS)-type maglev trains have received wide attention because of their advantages such as high speed, no mechanical friction, low noise, low cost and energy consumption, strong climbing ability, and green environmental protection. The open-loop instability is one of the key points and difficulties for the levitation control systems of maglev trains. The closed-loop feedback control method must be applied to realize stable levitation. However, there are currently many levitation control methods just in theory. Considering their advantages and disadvantages, it is a major demand for maglev trains to select efficient, stable, applicable, and cost-saving methods to improve their dynamic performance and safety, which motivated this review. First, the current status of research on maglev trains is introduced in this paper, including types, system components, and research modes in various countries, followed by an analysis of the levitation control methods for EMS-type maglev trains. Then, the technical characteristics of the levitation control systems are described according to the basic principles of levitation systems, model building, mathematical derivation, and control objectives. Next, three kinds of typical levitation control methods are reviewed, namely, linear state feedback methods, nonlinear control methods, and intelligent control methods, according to their improvements and applications. Lastly, we summarize and evaluate the advantages and disadvantages of the three methods, and future developments of levitation control are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.