2001
DOI: 10.1007/s003620100050
|View full text |Cite
|
Sign up to set email alerts
|

Order statistics from non-identical right-truncated Lomax random variables with applications

Abstract: Order statistics, outliers, robustness, single moments, product moments, recurrence relations, Lomax distribution, right-truncated Lomax distribution, permanents, censoring, bias, mean square error, BLUE,

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
18
0

Year Published

2003
2003
2023
2023

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 37 publications
(19 citation statements)
references
References 12 publications
0
18
0
Order By: Relevance
“…For example, Ghitany et al (2007) extend it by introducing an additional parameter using the Marshal and Olkin (1997) approach; Al-Awadhi and Ghitany (2001) use the Lomax distribution as a mixing distribution for the Poisson parameter and derive a discrete Poisson-Lomax distribution;and Punathumparambath (2011) introduced the double-Lomax distribution and applied it to IQ data. The record statistics of the Lomax distribution have been studied by Ahsanullah (1991) and by Balakrishnan and Ahsanullah (1994); the implications of various forms of right-truncation and right-censoring are discussed by Myhre and Saunders (1982), Childs et al (2001), Cramer and Schmiedt (2011) and others; and sample size estimation has been discussed by Abd-Elfattah et al (2006).…”
Section: Introductionmentioning
confidence: 99%
“…For example, Ghitany et al (2007) extend it by introducing an additional parameter using the Marshal and Olkin (1997) approach; Al-Awadhi and Ghitany (2001) use the Lomax distribution as a mixing distribution for the Poisson parameter and derive a discrete Poisson-Lomax distribution;and Punathumparambath (2011) introduced the double-Lomax distribution and applied it to IQ data. The record statistics of the Lomax distribution have been studied by Ahsanullah (1991) and by Balakrishnan and Ahsanullah (1994); the implications of various forms of right-truncation and right-censoring are discussed by Myhre and Saunders (1982), Childs et al (2001), Cramer and Schmiedt (2011) and others; and sample size estimation has been discussed by Abd-Elfattah et al (2006).…”
Section: Introductionmentioning
confidence: 99%
“…The posterior of , j j p λ and j β in (24), (25) and (26) is not known, but the plot of it shows that it is similar to normal distribution. Therefore to generate from this distribution, we use the Metropolis {Hastings method ( [51] with normal proposal distribution)}.…”
Section: Mcmc Methodsmentioning
confidence: 99%
“…This distribution was used for modeling size spectra data in aquatic ecology by [24]. [25] considered order statistics from non-identical right-truncated Lomax distributions and provided applications for this situation. [26] used the Pareto distribution as a mixing distribution for the Poisson parameter and obtained the discrete PoissonPareto distribution.…”
Section: Introductionmentioning
confidence: 99%
“…Childs and Balakrishnan (1998) obtained recurrence relations for moments from non-identical Pareto and truncated Pareto distribution. Childs (2001) gave recurrence relations for the single and product moments from nonidentical right truncated Lomax distribution. Moshref (2000) established recurrence relations for moments from non-identical generalized power function.…”
Section: Outliersmentioning
confidence: 99%