Polypropylene (PP) can hardly be reinforced by the layered silicate montmorillonite (MMT), but the material fatigue appears somewhat reduced. The probable reason is amplified competitive nucleation of the PP by MMT component. Utilizing small‐angle X‐ray scattering (SAXS) from synchrotron, we investigate the nanostructure evolution of the PP in straining experiments from neat PP and compatibilized composite materials. The compatibilizer is a styrene–ethylene/butylene–styrene copolymer (SEBS). Oriented injection‐molded test bars are studied.
The discrete SAXS probes variations of sizes and distances among those crystalline domains that are not placed at random. Crystallite dimensions and distances are documented for modeling purposes. The nanoscopic strain is computed from the distance variation and compared with the macroscopic strain. Differences between macroscopic and nanoscopic strain are observed. They require postulating regions with statistical placement of crystallites (poorly arranged region, PAR) in addition to the SAXS‐probed well‐arranged semi‐crystalline entities (WAE). The extensibility of WAEs must be different from that of the PARs. In neat PP, the observed WAEs are well developed and stronger than the PARs. In the composites, the WAEs are made from thin and less extended crystalline domains. They are weaker than the PARs that appear reinforced. Thus, enclosing each MMT layer a PAR is formed, and the WAEs generated farther away remain imperfect. Consequently, in the composites, the narrow crystalline domains from the WAEs do not break into even smaller pieces, and the fatigue of the composites is lower than that of the neat PP. Copyright © 2013 John Wiley & Sons, Ltd.