A sputtering gas-aggregation technique has been used to prepare FePt and FePt:Ag nanocluster films. The cluster size was controlled in a range from 3 to 6 nm. FePt cluster films were directly deposited onto Si substrate; FePt:Ag cluster films were fabricated by depositing a FePt cluster layer between a Ag underlayer and overlayer. Nanostructure and magnetic properties of the samples were characterized by x-ray diffraction, transmission electron microscopy, and magnetometry. The high magnetic anisotropy L1 0 fct phase was realized in the films annealed at a temperature of 550°C and above. The orientation of clusters is random. The coercivity increases with an increase of annealing temperature; high in-plane and out-of-plane coercivities, exceeding 10 kOe, were achieved in both FePt and FePt:Ag cluster films after annealing. For FePt:Ag films, the coercivity increases with Ag underlayer thickness, t Ag , and reaches about 17 kOe at room temperature for t Ag ϭ5 nm after annealing at 650°C for 10 min. The high coercivity is closely correlated with the degree of L1 0 ordering and nanostructure of the films.