2022
DOI: 10.3934/era.2022097
|View full text |Cite
|
Sign up to set email alerts
|

Ordering properties of positive solutions for a class of $ \varphi $-Laplacian quasilinear Dirichlet problems

Abstract: <abstract><p>We study ordering properties of positive solutions $ u $ for the one-dimensional $ \varphi $-Laplacian quasilinear Dirichlet problem</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \left \{\begin{array}{l} -\left (\varphi (u^{ \prime })\right )^{ \prime } = \lambda f (u) , \;\; -L &lt;x &lt;L, \ u ( -L) = u (L) = 0, \end{array}\right . \end{equation*} $\end{document} </tex-math></disp-formula><… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 32 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?