Lead (Pb) persists as an environmental toxicant despite aggressive environmental and occupational regulation. Neurotoxicological effects of acute Pb poisoning range from subtle cognitive deficits, to clumsiness and ataxia, to coma and seizures. In adult neurotoxicity, reductions of blood Pb levels are often associated with reversal of clinical signs. In children, however, the effects are more likely to endure, with even low levels of chronic Pb exposure correlating with decreasing IQ. These persistent effects likely result from neurodevelopmental insults, such as altered cell survival or maturation, although the mechanisms have not been fully defined. In the present study we define the effects of moderate-level Pb exposure on mammalian neurogenesis using a well-characterized cortical precursor model. Gestational day 14.5 rat cerebral cortical precursor cells were cultured in defined media and cell number, precursor proliferation, apoptosis, and neuritic process outgrowth were assessed following exposure to a range of Pb acetate concentrations. Surprisingly, whereas a concentration of 30 microg/ml Pb acetate was acutely toxic to neurons, concentrations between 1 and 10 microg/ml Pb acetate (approximately 3 microM and 30 microM Pb, respectively) increased cell number: 10 times as many cells exposed to 10 microg/ml Pb were present on day 4 as compared to control. The increase in cell number was not a result of increased proliferation, however, as DNA synthesis did not increase. Rather, Pb exposure maintained the survival of cortical precursors, as the progressive apoptosis occurring under control conditions was markedly reduced by the metal. Additionally, neuritic process initiation and outgrowth increased in a concentration-dependent manner, with processes four times as abundant on day 1 and twice as long on day 2. These results suggest that brief exposure to lead during neurogenesis directly affects cell survival and process development, potentially altering cortical arrangement. Consequently, alterations in neural circuitry may underlie some of the neurological effects of Pb exposure during brain development.