inorganic photovoltaic cells based on crystal-silicon, the solution processability of OPV cells makes it suitable for the largescale solution production at room temperature via the roll-to-roll method, which promises low-cost and large area device fabrication onto flexible substrates. [4][5][6] Benefiting from the great efforts devoted to the design of new materials, [7][8][9][10][11][12][13] optimization of the blend morphology, [14][15][16][17][18] understanding the charge generation mechanism, [19][20][21][22][23][24][25][26] significant progress has been achieved in the last few years. Recently, the power conversion efficiencies (PCEs) of OPV cells have surpassed ≈15%. [27][28][29] However, the devices with cutting-edge performance are fabricated using highly toxic solvents like chlorinated and/or aromatic solvents, which is not adaptable for large-scale production and becoming a severe problem that hinders the mass production of the OPV cells. Therefore, the material design of OPV materials should take both the efficiency and processability into consideration.At present, the commonly used processing solvents for high-performance OPV materials are chlorobenzene (CB) and chloroform (CF), as they possess excellent dissolving capability of the highly conjugated structures. [30][31][32] Over the last few years, the design and application of nonfullerene acceptors (NFAs) have achieved Recent advances in nonfullerene acceptors (NFAs) have enabled the rapid increase in power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells. However, this progress is achieved using highly toxic solvents, which are not suitable for the scalable large-area processing method, becoming one of the biggest factors hindering the mass production and commercial applications of OPVs. Therefore, it is of great importance to get good eco-compatible processability when designing efficient OPV materials. Here, to achieve high efficiency and good processability of the NFAs in eco-compatible solvents, the flexible alkyl chains of the highly efficient NFA BTP-4F-8 (also known as Y6) are modified and BTP-4F-12 is synthesized. Combining with the polymer donor PBDB-TF, BTP-4F-12 shows the best PCE of 16.4%. Importantly, when the polymer donor PBDB-TF is replaced by T1 with better solubility, various eco-compatible solvents can be applied to fabricate OPV cells. Finally, over 14% efficiency is obtained with tetrahydrofuran (THF) as the processing solvent for 1.07 cm 2 OPV cells by the blade-coating method. These results indicate that the simple modification of the side chain can be used to tune the processability of active layer materials and thus make it more applicable for the mass production with environmentally benign solvents.
Organic PhotovoltaicsOrganic photovoltaic (OPV) cells consisting of organic layers as photoactive materials are one of the most promising next-generation photovoltaic technologies to harvest clean and renewable solar energy. [1][2][3] When compared with the conventional