Abstract:Measuring soil organic carbon (SOC) in riparian forest soils affected by floods is crucial for evaluating their concentration and distribution along hydrological gradients (longitudinal and transversal). Hydromorphological factors (e.g., sedimentation vs. erosion, size of floodplain, flood recurrence) may be the cause of major variations in the concentration of organic matter and SOC in soils and could have a direct impact on C levels in soil profiles. For this study, SOC concentrations were assessed in riparian soils collected along transects perpendicular to the riverbanks which cross through inundated and non-inundated zones. Other soil properties (e.g., acidity, nitrogen, texture, bulk density) that may affect the concentration of SOC were also considered. The main purpose of this study was to assess SOC concentrations in soils subjected to flooding with those outside the flood zones, and also measure various soil properties (in surface soils and at various depths ranging from 0 to 100 cm) for each selected area. Across the various areas, SOC shows marked differences in concentration and spatial distribution, with the lowest values found in mineral soils affected by successive floods (recurrence of 0-20 years). SOC at 0-20 cm in depth was significantly lower in active floodplains (Tukey HSD test), with average values of 2.29 ± 1.64% compared to non-inundated soils (3.83 ± 2.22%). The proportion of C stocks calculated in soils (inundated vs. non-inundated zones) was significantly different, with average values of 38.22 ± 10.40 and 79.75 ± 29.47 t·ha −1 , respectively. Flood frequency appears to be a key factor in understanding the low SOC concentrations in floodplain soils subjected to high flood recurrence (0-20 years).