Organic electrochemical transistors (OECTs) operate at very low voltages, transduce ions into electronic signals, and reach extremely large transconductance values, making them ideally suited for bio-sensing applications. However, despite their promising performance, the dependence of their maximum transconductance on device geometry and applied voltages are not correctly captured by current capacitive device models. Here, current scaling laws are revised in the light of a recently developed 2D device model that adequately accounts for drift and diffusion of ions inside the polymer channel. It is shown that the maximum transconductance of the devices is found at the transition between the depletion and accumulation region of the transistors, which as well provides an explanation for the observed shift of the transconductance peak with geometric dimensions and the drain potential. Overall, the results provide a better understanding of the working mechanisms of OECTs, and facilitate design rules to optimize OECT performance further.