The traditional approach to modeling productive efficiency assumes that technology is constant across the sample. However, farms in different regions may face different production opportunities, and the technologies they employ may differ due to environmental factors. Therefore, rather than using a traditional stochastic frontier model in such cases, a stochastic meta-frontier (SMF) analysis is recommended to account for environmental factors between regions. It follows that differences in environmental factors between the upland and lowland regions in Anambra State, Nigeria, may result in farmers producing rice under different production and environmental conditions. Using the SMF model, this study, for the first time, determines technical efficiency (TE) and technological gap ratios (TGRs) of rice production from the upland and lowland regions in the Awka North Local Government Area of Anambra State, Nigeria. Our data are from a cross-section sample of randomly selected rice farmers. Results reveal that lowland regional rice producers are on average, significantly more technically efficient (91.7%) than their upland counterparts (84.2%). Additionally, mean TGRs associated with lowland rice farmers are higher (92.1%) than their corresponding upland producers (84.7%). While the upland rice producers are less technically efficient and further away from their full potential, results indicate that both sets of farmers do not use advanced technologies to match the industry’s potential. We suggest that agricultural policy should focus on providing regionally specific technologies, such as improved rice varieties that fit the working environment of the lagging area, to help rice farmers improve their resource efficiency and minimize technological gaps.